A Unified Tagging Solution: Bidirectional LSTM Recurrent Neural Network with Word Embedding

نویسندگان

  • Peilu Wang
  • Yao Qian
  • Frank K. Soong
  • Lei He
  • Hai Zhao
چکیده

Bidirectional Long Short-Term Memory Recurrent Neural Network (BLSTMRNN) has been shown to be very effective for modeling and predicting sequential data, e.g. speech utterances or handwritten documents. In this study, we propose to use BLSTM-RNN for a unified tagging solution that can be applied to various tagging tasks including partof-speech tagging, chunking and named entity recognition. Instead of exploiting specific features carefully optimized for each task, our solution only uses one set of task-independent features and internal representations learnt from unlabeled text for all tasks. Requiring no task specific knowledge or sophisticated feature engineering, our approach gets nearly state-ofthe-art performance in all these three tagging tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Distributed Word Representations For Bidirectional LSTM Recurrent Neural Network

Bidirectional long short-term memory (BLSTM) recurrent neural network (RNN) has been successfully applied in many tagging tasks. BLSTM-RNN relies on the distributed representation of words, which implies that the former can be futhermore improved through learning the latter better. In this work, we propose a novel approach to learn distributed word representations by training BLSTM-RNN on a spe...

متن کامل

Part-of-Speech Tagging with Bidirectional Long Short-Term Memory Recurrent Neural Network

Bidirectional Long Short-Term Memory Recurrent Neural Network (BLSTMRNN) has been shown to be very effective for tagging sequential data, e.g. speech utterances or handwritten documents. While word embedding has been demoed as a powerful representation for characterizing the statistical properties of natural language. In this study, we propose to use BLSTM-RNN with word embedding for part-of-sp...

متن کامل

Bidirectional Long Short-Term Memory Network with a Conditional Random Field Layer for Uyghur Part-Of-Speech Tagging

Uyghur is an agglutinative and a morphologically rich language; natural language processing tasks in Uyghur can be a challenge. Word morphology is important in Uyghur part-of-speech (POS) tagging. However, POS tagging performance suffers from error propagation of morphological analyzers. To address this problem, we propose a few models for POS tagging: conditional random fields (CRF), long shor...

متن کامل

Neural Morphological Tagging from Characters for Morphologically Rich Languages

This paper investigates neural characterbased morphological tagging for languages with complex morphology and large tag sets. We systematically explore a variety of neural architectures (DNN, CNN, CNNHighway, LSTM, BLSTM) to obtain character-based word vectors combined with bidirectional LSTMs to model across-word context in an end-to-end setting. We explore supplementary use of word-based vect...

متن کامل

Bidirectional LSTM-CRF Models for Sequence Tagging

In this paper, we propose a variety of Long Short-Term Memory (LSTM) based models for sequence tagging. These models include LSTM networks, bidirectional LSTM (BI-LSTM) networks, LSTM with a Conditional Random Field (CRF) layer (LSTM-CRF) and bidirectional LSTM with a CRF layer (BI-LSTM-CRF). Our work is the first to apply a bidirectional LSTM CRF (denoted as BI-LSTM-CRF) model to NLP benchmark...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1511.00215  شماره 

صفحات  -

تاریخ انتشار 2015